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Simple analytic expression for the initial fundamental optical
solitons on wavelength division multiplexed (WDM) beams in a nonlinear
fiber has been found. For an ideal fiber with no loss and uniform group
velocity dispersion (GVD) in the anomalous GVD region, the initial form
is (1 + 2(M-1)) -1/2 sech(t), where M is the number of WDM beams and 7T 1is
the normalized time. Computer simulation shows that these initial
pulses on WDM beams in this fiber will propagate undistorted without
change in their shapes for arbitrarily long distances. Discovery of the
existence of solitons on WDM beams presents the ultimate goal for
optical fiber communication on multiple wavelength beams in a single

fiber.




I. Introduction

The discovery in 1973 that optical soliton [1] on a
single wavelength beam can exist in fiber is one of the most
significant event since the perfection of low-loss optical
fiber communication. This means that, in principle, data
pulses may be transmitted in a fiber without degradation
forever. This soliton discovery sets the ultimate goal for

optical fiber communication on a single wavelength beam.

Another most significant event is the development of
wavelength division multiplexed (WDM) transmission in a
single mode fiber [2]. This means that multiple beams of
different wavelengths, each carrying its own data load, can
propagate simultaneously in a single mode fiber. This WDM
technigque provides dramatic increase in the bandwidth of a
fiber. However, due to the presence of complex nonlinear
interaction between co-propagating pulses on different
wavelength beams, it is no longer certain that WDM solitons

can exist.

The existence of solitons is a blissful event in
nature. It is a marvel that the delicate balance between the
dispersion effect and the nonlinear effect can allow a
specially shaped optical pulse to propagate in the fiber
without degradation. This is called a temporal soliton [1].

It is an equal marvel that the delicate balance between the




diffraction effect and the nonlinear effect can also allow a

specially shaped pulse to propagate in planar waveguide or

array waveguides without degradation. This 1is called a
spatial soliton [3]. They occur only on single wavelength
beam.

When beams with different wavelengths co-propagate in a
single mode fiber, such as in the wavelength division
multiplexed (WDM) case [2], interaction of pulses on
different beams via the nonlinear cross phase modulation
(CPM) effect (the Kerr effect) is usually instrumental in
destroying the integrity of solitons on these wavelength
multiplexed beams. Other recent applications of CPM effect

in fiber have been reported [4].

The purpose of this paper is to show that temporal
solitons can exist on WDM beams in a single fiber under
appropriate conditions. The existence of these solitons
critically depends on the presence of the nonlinear cross
phase modulation effect of the WDM beams. Just as the
earlier single beam soliton case, this discovery sets the

ultimate goal for optical fiber communication on WDM beams.

II. The Fundamental Equations

The fundamental equations governing M numbers of co-

propagating waves in a nonlinear fiber including the CPM




phenomenon are the coupled nonlinear Schrodinger equations

[5]:
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Here, for the jth wave, Aj(z,t) is the slowly-varying
amplitude of the wave, Vgyj, the group velocity, B2, the

dispersion coefficient ( P24 = dvgyl/dw ), o5, the absorption

coefficient, and

nz .
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is the nonlinear index coefficient with Agfs as the effective

core area and n; = 3.2 X 10716 cm2/W for silica fibers, ®; is

the carrier frequency of the jth wave, c is the speed of

light, and z is the direction of propagation along the fiber.

Introducing the normalizing coefficients

To
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Here, Ty is the pulse width, Pg5j is the incident optical power
of the jth beam, and dij, the walk-off parameter between beam
1 and beam j, describes how fast a given pulse in beam j
passes through the pulse in beam 1. In other words, the

walk-off length is




Ly(15) = To/|d1;]. (7)

So, Ly(1j) is the distance for which the faster moving pulse

(say, in beam j) completely walked through the slower moving
pulse in beam 1. The nonlinear interaction between these two
optical pulses ceases to occur after a distance Ly(15). For
cross phase modulation (CPM) to take effect significantly,

the group-velocity mismatch must be held to near zero.

Finding the analytic solution of Eg. (6) which is a set
of simultaneous coupled nonlinear Schrodinger equations is a
formidable task. However, it may be solved numerically by
the split-step Fourier method, which was used successfully
earlier to solve the problem df beam propagation in complex
fiber structures, such as, the fiber couplers, and to solve
the thermal blooming problem for high energy laser beams [6].
According to this method, the solutions may be advanced first
using only the nonlinear part of the equations. And then the
solutions are allowed to advance using only the linear part
of Eq. (6). This forward stepping process 1s repeated over
and over again until the desired destination is reached. The
Fourier transform is accomplished numerically via the well-

known Fast Fourier Transform Technique.




III. Soliton on a Single Beam

It is well known that, for an idealized fiber with no
loss, optical soliton on a single wavelength beam takes the

initial form [1,5]:

u(0,tT) = N sech (1) (8)

where N is the soliton magnitude and

N2 = . (9)

It is also known that the single beam soliton equation is

Ju 1 202u
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Here, the dispersion length Lp and the nonlinear length Lyr

are defined earlier in Eq. (6). In the case of anomalous
group velocity dispersion (GVD) for soliton, sgn(Bz) = -1.
For the fundamental soliton case, N = 1. This means that

when an initial pulse with pulse shape given by Eq.(8) with
an amplitude of unity is launched inside an ideal lossless
fiber, the pulse will retain its hyperbolic secant shape
without degradation for arbitrarily long distances. One

notes that the delicate balance between the dispersion effect



represented by Lp and the nonlinear self phase modulation
effect represented by Ly occurs at N = 1 for the fundamental

soliton. The nonlinear effect on a pulse for a single

wavelength beam is embodied in Ly, while the dispersion

effect on the pulse is embodied in Lp.

VI. Solitons on Wavelength Division Multiplexed Beams

It is of interest to learn whether solitons exist on

WDM beams in a fiber. Starting with an idealized fiber which

is lossless (i.e., 05 = 0 for all beams) and which possesses

uniform group velocity dispersion (i.e., vgy = vg for all
beams) within the wavelength range under investigation, the
equations governing the propagation characteristics of signal

pulses are:
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The anomalous GVD case in which sgn(ng) = -1, is considered.

It is seen from the above equation that the summation term in
the bracket representing the cross phase modulation (CPM)

effect is twice as effective as the self phase modulation



(SPM) effect for the same intensity. This observation also
provides the idea that cross phase modulation may be used in
conjunction with self phase modulation on the WDM pulses to
counter act the GVD effect, thus producing WDM solitons.
Comparing the bracketed terms in Egs.(10) and (11l) shows that
if one chooses the correct amplitudes for the initial pulses
on WDM beams and retains the hyperbolic secant pulse form, it
may be possible to construct a set of initial pulses which
will propagate in the same manner as the single soliton pulse
case, i.e., undistorted and without change in shape for
arbitrarily long distances. Let us choose the initial pulses

as follows:

u;(0,7) = (1 + 2(M-1))-1/2 sech(r) (12)

1,2,3, ..I..M ),

(3

where M is the number of WDM beams.

Using these initial pulse forms numerical simulation
was carried out to solve Eq. (11). The split-step Fourier
method was used. The fiber parameters used for the

simulation are:

e
1

length of fiber = 1000 km

dispersion coefficient = -2 ps2?/km

B2




nonlinear index coefficient = 20 W-lkm-1

’Y =
To = pulse width = 10 ps.
ILp =50 km
Ly, = 50 km.
Four cases with M = 1,2,3,4 were treated. The M = 1 case

corresponds to the well known single soliton case; here, the
amplitude for the fundamental soliton is 1. For the 2-beam
case, the amplitude is (3)-1/2 = 0.57735. For the 3-beam
case, it is (5)-1/2 = 0.4472136. For the 4-beam case, it is
(7)-1/2 = 0.37796447. It is noted that the amplitude of the
fundamental solitons on WDM multi-beams becomes successively
smaller as the number of beams is increased. This is because
the nonlinear effect becomes more pronounced when more beams
are present. Numerical simulation shows that after
propagating 1000 km through this fiber the original pulse
shape for all these WDM pulses remains unchanged. It thus
appears that the initial forms chosen for the pulses on WDM

beams are the correct soliton forms for WDM beams.

V. Conclusion

The existence of optical solitons on wavelength
division multiplexed beams in a fiber is not only of
fundamental interest but also provides enormous implication

in the field of optical fiber communications. It is
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conceivable that multi-tera bits of information can be sent
through a single fiber in the bit-parallel wavelength

division multiplexed format [2] without degradation.
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